8 research outputs found

    How\u27s My Network - Incentives and Impediments of Home Network Measurements

    Get PDF
    Gathering meaningful information from Home Networking (HN) environments has presented researchers with measurement strategy challenges. A measurement platform is typically designed around the process of gathering data from a range of devices or usage statistics in a network that are specifically behind the HN firewall. HN studies require a fine balance between incentives and impediments to promote usage and minimize efforts for user participation with the focus on gathering robust datasets and results. In this dissertation we explore how to gather data from the HN Ecosystem (e.g. devices, apps, permissions, configurations) and feedback from HN users across a multitude of HN infrastructures, leveraging low impediment and low/high incentive methods to entice user participation. We look to understand the trade-offs of using a variety of approach types (e.g. Java Applet, Mobile app, survey) for data collections, user preferences, and how HN users react and make changes to the HN environment when presented with privacy/security concerns, norms of comparisons (e.g. comparisons to the local environment and to other HNs) and other HN results. We view that the HN Ecosystem is more than just “the network” as it also includes devices and apps within the HN. We have broken this dissertation down into the following three pillars of work to understand incentives and impediments of user participation and data collections. These pillars include: 1) preliminary work, as part of the How\u27s My Network (HMN) measurement platform, a deployed signed Java applet that provided a user-centered network measurement platform to minimize user impediments for data collection, 2) a HN user survey on preference, comfort, and usability of HNs to understand incentives, and 3) the creation and deployment of a multi-faceted How\u27s My Network Mobile app tool to gather and compare attributes and feedback with high incentives for user participation; as part of this flow we also include related approaches and background work. The HMN Java applet work demonstrated the viability of using a Web browser to obtain network performance data from HNs via a user-centric network measurement platform that minimizes impediments for user participation. The HMN HN survey work found that users prefer to leverage a Mobile app for HN data collections, and can be incentivized to participate in a HN study by providing attributes and characteristics of the HN Ecosystem. The HMN Mobile app was found to provide high incentives, with minimal impediments, for participation with focus on user Privacy and Security concerns. The HMN Mobile app work found that 84\% of users reported a change in perception of privacy and security, 32\% of users uninstalled apps, and 24\% revoked permissions in their HN. As a by-product of this work we found it was possible to gather sensitive information such as previously attached networks, installed apps and devices on the network. This information exposure to any installed app with minimal or no granted permissions is a potential privacy concern

    Calmodulation meta-analysis: Predicting calmodulin binding via canonical motif clustering

    Get PDF
    The calcium-binding protein calmodulin (CaM) directly binds to membrane transport proteins to modulate their function in response to changes in intracellular calcium concentrations. Because CaM recognizes and binds to a wide variety of target sequences, identifying CaM-binding sites is difficult, requiring intensive sequence gazing and extensive biochemical analysis. Here, we describe a straightforward computational script that rapidly identifies canonical CaM-binding motifs within an amino acid sequence. Analysis of the target sequences from high resolution CaM-peptide structures using this script revealed that CaM often binds to sequences that have multiple overlapping canonical CaM-binding motifs. The addition of a positive charge discriminator to this meta-analysis resulted in a tool that identifies potential CaM-binding domains within a given sequence. To allow users to search for CaM-binding motifs within a protein of interest, perform the meta-analysis, and then compare the results to target peptide-CaM structures deposited in the Protein Data Bank, we created a website and online database. The availability of these tools and analyses will facilitate the design of CaM-related studies of ion channels and membrane transport proteins

    Predicting Calmodulin Binding Sites via Canonical Motif Clustering

    Get PDF

    LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

    Get PDF
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes

    Overview of the medium and high frequency telescopes of the LiteBIRD space mission

    No full text
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD
    corecore